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Abstract:
This report is divided into three parts:

In the first part we present our ongoing work on the optimization of an MHD energy by-pass concept.
Here we consider the optimization of the power generator and accelerator components individually, and
are in the process of a simultaneous optimization of an integrated generator-combustor-accelerator
concept in a 2-D sense. We have concentrated our efforts on developing an optimization scheme that
couples a flow solver (perfect gas Euler and equilibrium gas N-S) with a Poisson solver for the electric
field including Hall effects. The architecture/algorithm of the optimization scheme is such that geometric
and/or physical parameters can be optimized for a given set of free-stream conditions and objective
function. The objective function was MHD power extracted in the case of a MHD generator, and thrust in
the case of an accelerator.

The second part of this report presents some ideas on how to extend this development and the associated
real-gas MHD technology at HyPerComp Inc. into a potential Phase-II. We have developed a higher (4™
order and beyond,) order accurate solver for MHD developed under an AFRL contract. We consider
possibilities involving the usage of this solver in accurate boundary layer calculations and plasma effects
in shear layers as a potential Phase-1I extension. The current study of energy bypass concepts may itself
be extended into an extensive exploration of finite rate processes in such systems coupled with an
efficient optimization routine based on adjoint methods.

A masters thesis supported in part by this contract on the optimization problem setup for hypersonic inlets
to improve mass capture has been completed. Relevant portions of this thesis have been appended to this
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Optimization study of the MHD energy bypass engine concept
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1.1 MHD with energy bypass — the associated optimization problem

At HyPerComp, we have in the past studied global flow control for accelerators and hypersonic inlets
using MHD. Further, there are studies from the literature that provide analytical results in MHD power
generator optimization. Test data to validate numerical models is available in plenty due to the interest in
this subject in the 1960s and to some small extent, even in the present time. Due to the high confidence
level in the prediction and optimization of MHD power generator/accelerator design, as well as some
recent AFRL interest in energy bypass concepts (Refs [3,6]), we resolved to choose the following
problem as a demonstration of Phase-I progress:

Hall-type generator Hall-type accelerator

Il.cl B-field

ball
nn“

Combustion chamber

e

Power
Figure-1: Energy bypass concept for hypersonics with an integrated MHD generator/accelerator

An integrated MHD power generator/accelerator system coupled through a combustion chamber where a
fixed amount of heat is added to the system will be optimized to obtain the best geometric parameters.
Applied magnetic field will be fixed, and a Hall-type system will be used to obtain best performance from
the device. An equilibrium air Navier-Stokes solver will be coupled with a Poisson solver which will
compute the electric field. Due to the need for fine segmentation in the electrodes to overcome the loss of
efficiency due to the Hall effect, a special set of boundary conditions will be used at electrode walls.
Electrical conductivity produced by seed substances as well as non-equilibrium e-beam ionization can be
studied using our codes. However, we will restrict Phase-I work to include only equilibrium reacting air
with alkali seed. The team from UT-Arlington will conclude their investigation on adjoint techniques
initiated in the earlier progress report. Further, they will perform trial studies on hypersonic inlets with
MHD wherein they will attempt to optimize the mass capture at off-design conditions using an applied
magnetic field in the plane of the flow.

The success of Phase-I research will demonstrate the use of optimization techniques in the design and
estimation of the potential performance of energy bypass devices being proposed for hypersonic flight. It
will also produce a problem formulation which may be extended in Phase-II to study alternate “local”
MHD flow control applications that are beyond the scope of phase-I study.

Final report for Phase-1 STTR Contract # FA9550-04-C-0117, “MHD Design optimization” Page 3 of 30

‘“W;I\f/‘:’ERCOMP, INC.

Leaderin High Performance Computing




1.2 MHD power generator / accelerator

Segmented electrodes
y, y” continuous y=constant

y=constant 4
x,y'design variables

y’ design variable

Flow

External load
Figure 7: Schematic for MHD power generator optimization study

The theory of MHD power generators and that of flow accelerators is very similar in nature and is in a
fairly mature stage, having been an active area of research since the 1960s (the ideas date back to
Faraday!). Interest in optimizing their design came from worldwide efforts to build them and the
conviction that their efficiency would be high compared to the-then available power producing methods
due to the high temperatures of the working medium and the ability to dispense with expensive rotating
machinery such as in turbines. Starting from the work of Neuringer [11], several analytical studies (1,15)
have been performed to study the optimization problem. A recent study attempted to study the same
problem (ref. [5]), quite characteristically unaware of the wealth of prior technical literature in the subject.

The recent development of advanced modeling ability in the area of MHD and plasma physics (e.g.,
Gaitonde [3] among others,) has enabled researchers to use CFD to assess the possibility of in-flight
MHD power generation and flow acceleration, particularly for energy bypass concepts as discussed in
refs [3,6]. We propose now, to use the studies of refs [3,6] as a baseline and perform a formal design
optimization study, albeit 2-D in phase-I, to assess the sensitivity of its performance to various design
parameters.

In this report, we merely present an overview of the physics and some sample results that validate the
modeling of Hall-type power generators using MHD codes at HyPerComp.

1.2.1 Ohm’s law relevant to Hall generators and accelerators

The appropriate form of Ohm’s law relevant to MHD power generation or flow acceleration must include
the Hall effect and may be then written as:

7:0(E+I7xl_§)—%z(.7xl§)

The electric field (applied or induced,) must be divergence and curl-free and can be derived from a scalar
potential. It is also at times customary to define a total electric field as the field observed by a particle
traversing with the local velocity of the medium. These statements can be expressed mathematically as:

E=-Vp,E'=E+VxB

We assume a two dimensional flow, in which velocity and electric field components only have x and y
components. At each domain boundary or computational cell face, a normal vector and an accompanying
tangent vector may be defined. We use the following notation for these vector quantities:

E'=(ELE) V=), i=(n.n) #=l.7,)=(n,n,)

Final report for Phase-I STTR Contract # FA9550-04-C-0117, “MHD Design optimization” Page 4 of 30
YPERCOMP, INC.

i
1% ¢ Leaderin Migh Performance Computing

E:




The final form of Ohm’s law that is used in our computations is written as follows:

- {E;—ﬁE;} s [(%—BV)—/J’(wﬁB")}

T1+ 4| E.+ B, | 1+ 5| (p, + Bu)+ Blp, - BY)

The divergence of the current density J derived above must identically vanish for an electrically neutral
fluid. This results in a Poisson type equation for the electric potential which must be solved for an
appropriate set of boundary conditions. We present some examples of such boundary conditions.

Electrode surface: An electrode is a constant potential surface. To this extent, one may clamp the potential
of any one electrode in the domain to be the ground potential zero. However, any other electrodes present,
must inherit a potential based on the exact layout of an internal/external circuit connecting these
electrodes. In the case of an accelerator, a fixed potential difference may be applied across pairs of
electrodes. While the potential of one electrode in a pair may be computed from an appropriate BC, the
other is obtained by adding the voltage of the battery. In a generator, a load may be connected across a
pair of electrodes and the potential difference may be inferred from the current circuited externally
through the electrode pair.

Insulator: An insulating wall has zero current flowing normally into it. This can be used as a BC.

Infinitely segmented electrodes: The Hall effects diminishes the performance of MHD devices by
producing current components normal to the principal direction of current production and diminishing the
magnitude of the total current by a factor. Segmentation of the electrodes can somewhat alleviate this
effect and improve performance. In a practical CFD code, modeling a very finely segmented set of
electrodes is frequently infeasible due to the large demands on the mesh resolution. This issue can be
resolved by the assumption of infinite segmentation, as discussed in Oliver and Mitchner [12]. The
boundary condition to be used in such a case is that the current tangential to the region with infinitely
segmented electrodes is zero. Further, these electrodes may be connected externally in order to reduce the
transverse potential gradient in a “Linear Hall Generator”. In such a situation, the potential of one row of
electrodes is let to float subject to vanishing tangential current. The corresponding set on the opposite face
are given a potential which is equal to it or determined from external loads connected between them.

1.2.2 Mathematical expressions for current BCs:

As mentioned earlier, we use two types of BCs on current related to its component normal or tangential to
a wall. Using the notation from before, we may write these components as:

J ' ﬁ B %(%nx B anx h ﬂw}’"* - ﬂBunx + ¢yny + Buny + ﬁ(oxny - /Bany)
~ 2ol )0, b, - ) B 4)- B )

J.-F= I;—’GB;(%(,BnX —n,)+0,(n, +pn )+ B -7)- BV 7))

In the case when these components are to vanish, we can obtain convenient expressions for the gradient of
the electric potential by rearranging terms, as below:
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The case of a linear Hall generator has been studied often in the past. Here, an infinite sequence of
electrode pairs is short-circuited from outside. This makes the potential difference in the y-direction zero:
E, =0
Current components can then be obtained by the somewhat simplified expressions:
o

o3
x 1+ﬂz (Ex+uﬂB)3 Jy_:ﬂ—z_(ﬂEx_uB)

Further simplification may result when studying the open-circuit condition wherein the current in the x-
direction is zero in a one-dimensional sense. All field components can be derived analytically then.

1.2.3 Faraday-type MHD channel with Hall effect

We first present an MHD channel with a Hall parameter §= 1 and electrical conductivity = 1 (non-

dimensional quantities). A Faraday type configuration is considered, where flat plate electrodes are used
to cover a significant portion of the channel. These electrodes are held at a constant potential difference.
Electric potential contours and current lines for such a flow are shown in Fig. [8] below.
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Figure 8: Electric potential contours (left) and current lines (right)

A characteristic feature of such a flow is the tendency of current lines to bunch upstream of the cathode
and downstream of the anode in the presence of the Hall effect. The strong concentration of field
gradients in these regions can cause damage to the electrodes, and is one of the perils of segmenting
electrodes in MHD channels.

While the above describes the current features at the electrode-insulator boundary, the applied magnetic
field has a very direct bearing on the induced current, as is shown in the following cases. The applied
magnetic field is ramped up and held constant through most of the channel. All channel walls are assumed
to be insulating here. The magnetic field is then evenly ramped down to zero. The regions of B-field
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gradients show the presence of eddy currents, as seen in Fig. [9]. As the Hall parameter increases, these
features develop asymmetries, and can eventually form very strong current components near the wall.

Figure 9: Current lines (above) and potential contours (below) for a channel flow with B-field gradients.
Hall parameter is 0, 1 and 2 in the 3 images, in sequence.
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1.2.4 Infinitely segmented linear Hall generator

A very critical part of our approach to MHD/plasma flows is to model only verifiable physical
phenomena for which there are adequate numerical models in the literature. The study of linear Hall
generators is virtually a classical problem in MHD power generator studies and serves as an excellent test
case in checking an MHD Poisson solver routine for boundary conditions and internal consistencies. We
use the relations presented earlier for quasi-1D analysis to cross check the results from a 2-D calculation.
The flow parameters are selected as follows:
u=355,v=0,0=1p=1,8B_, =1
3k 1 B-lekd

L L

Finely Segmerﬂed electrodes
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Figure 10: B-field and electric potential distribution for the segmented electrode generator
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We present in Fig [11] the results from this calculation in the region of the Hall generator. Using the
parameters listed earlier, and the relations in section [4.2] for a linear Hall generator, we must obtain a y-
direction current density of 0.5(-uB + BE,). The component Ex has been computed to be about -2.931.
The value of uB is about -3.55. This gives a current density jy of about -3.24 which matches closely with
the mean value shown in Fig. [11].

Top wal
Bottom wail

—h—— Centor hne

T T
[ ]

W
(=
T

Topwal
L] Botfom wall
4 Ceonlei ine

Electric potential
N
o
<

S
™

Y T Y S T |

P SV U S R

10 5 o s w1 20
X X
Top wal
[ ] Bollom wali
Conler ine
..rfv\-\vv-
of 4 N
-
L]
.
y
ot
| Figure 11 : Linear Hall generator with
:1 infinitely segmented electrodes between x =
o ../" 5.5 and 15.5 and a constant magnetic field
o8 9008 7
R that tapers off to zero at x = 4.5 and 16.5.
Note the constant potential gradient in the x-
1 direction and the virtual zero potential drop in

PR S T | . .
15 26 the y-direction

Further, it may be observed that the electric potential gradient in the y-direction is virtually zero, while a
Hall voltage develops along the length of the channel. All these parameters are observed to be in good
agreement with quasi-1D estimates, thus validating the MHD portion of this modeling effort.
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1.3 Shape Optimization

In this study we concentrated on optimizing a single geometric parameter, in order to demonstrate the
feasibility of our approach. This study was also intended to identify issues such as convergence criterion
for the objective function, effect of grid-size on the search direction in the optimization routine and
computing time for an optimization cycle. It was also aimed at identifying limits of physical parameters
(electrical conductivity/interaction parameter) on the stability and convergence of the overall scheme.
Optimization results shown here are for inviscid flows (Euler solutions). The results from these solutions
would be good indicators to assess grid size and operating range (for design variables) for viscous flow
simulations.

Figure 12 shows a generator/accelerator formed using a double cubic spline. The design parameters and
their notations are explained in Table I. Variation of these design parameters can be used to optimize the
shape of the accelerator/generator. In the results presented here, a single design parameter, (y’, or y’;) has
been varied in the optimization process. The constraints on the design variables were that the slope be

positive.

4 Table 1
Parameter Symbo
I
Inlet Diameter Yo
Outlet Diameter Y,
Location of end-points of Xe
Xg spline
Yo Vi Slope at inlet Yo
Slope at outlet Y’
Slope at x. X'
Length of /
generator/accelerator
y

A

Figure 12: Schematic of geometry

Figure 13 shows the shape optimization for maximizing thrust when the design variable is y’, . All other
design variables shown in Table I were kept constant (see Table II). The initial value of y’; is 10 °. The
upper bound of y’; was set at 40 °. The optimization process shows that increasing y’; increases thrust.
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Final Solution => 100 grid pts
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Figure 13: Shape optimization process, showing dependence of optimized shape on axial grids.

Table II. Parameters used in the shape optimization study

Parameter Symbol
Inlet Diameter (y,,) 0.2 (m)
QOutlet Diameter (y)) 0.4 (m)
Location of end-points of spline (x.) | 0.0
Slope at inlet (y’,) 0.0
Initial slope at outlet (v*) 10.0
Slope at x 0.0
Length of generator/accelerator (/) 1.0 (m)

An important consideration in shape optimization is determining the grid size so as not to influence the
search direction in the optimization process. Table III shows the effect of axial grids on the optimization
process. The results show converged values of the objective function (thrust) for y/ = 10 degrees (red
line in Figure 2). It is seen that when the number of axial grid points is below 200, the optimization
search direction seeks a different local maxima. A particular geometry (corresponding to a given y,’) was
considered to be converged (for all grids) if the variation in the objective function was less than 0.5%
after an interval of 500 time-steps. Thus a fully converged objective function on a coarse grid might
indicate a different optimized solution as compared to a fine grid. In this particular case, the coarser grid
indicates that the thrust is maximum if the channel radius is monotonically increasing and the slope at the
outlet is near zero. The fine grid solutions (200 X 60, 400 X 60 and 800 X 60) indicate however, that the
thrust can be optimized if there is a constriction in the channel between the inlet and the outlet, thus
implying that higher values of y/, yield higher thrust. These considerations are important in deciding the
minimum number of grid points to ensure unambiguous designs. Minimizing the number of grid points is
of great importance in coupled MHD-viscous flow simulations as this is a computationally intensive
process.
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Table III: Variation of Thrust at the exit plane with axial grid size
Simulation # | Grid points Thrust in KJ
1 100X 60 0.1945442
2 200 X 60 0.2582707
3 400 X 60 0.2924424
4 800 X 60 0.3096796

From Table III it is clear that the thrust varies less than 4% when the number of grid points in the axial
direction is increased from 400 to 800. Hence this grid could be used to conduct further optimization
studies. It was found that use of non-uniform grids in the radial direction did not change the value of

thrust obtained using uniform grids.
1.3.1 Shape optimization of a MHD-accelerator (Euler solutions)

Based on the results in Table III, a 400X60 grid was used to study the shape optimization process with
and without MHD for conditions shown in Table IV. These operating conditions (temperature/pressure
and Mach number) are representative for operation of a MHD-bypass accelerator where seeding can be
used to create the required ionization levels for MHD effects.

Table IV: Operating conditions for MHD accelerator
Inlet Pressure 0.1 atm
Inlet Density 1.38E-2

kg/m3
Inlet Temperature 2500 K
Inlet Mach Number 3
Electrical conductivity 1 mho/m
Max B-field 1T
Hall Parameter 1
Applied Potential 2000V
Difference
Interaction parameter =0.025

Figure 3 shows the variation of thrust with y’; with and without MHD effects. It is seen that the search
direction with and without MHD is the same. Optimized thrust without MHD is less than that obtained
with MHD. The electrical conductivity was kept constant at 1.0 mho/m in the flow field. The magnetic
field (B) is as shown in Figure 14.

A
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v
Figure 14: Variation of Magnetic field along axis of MHD accelerator
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The maximum magnetic field is maintained in the middle of the accelerator in order to prevent MHD
effects from creating instabilities at the inlet and outlet. The magnetic field is along the positive Z-axis
(out of the plane of the paper). Figures 15 (a) and (b) show the Mach number contours with and without
MHD effects. For a channel with an area-ratio of 2 and an inlet Mach number = 3.0, the isentropic value
of the exit plane Mach number is 3.75. Figure 16 shows that the axial variation of the Mach number
along the centerline of the accelerator. It is seen that the exit plane Mach number is about 3.5 without
MHD and 3.8 with MHD. The increase in exit plane Mach number is small on account of the small value
of the interaction parameter. Simulations are currently being run for higher values of interaction

parameter.
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Figure 16: Axial variation of Mach number along the centerline. ‘
Figure 17 shows contours of electric potential (¢) along with the current lines in the channel. The
presence of the Hall effect is depicted in the field lines. It is seen that the current flows in the positive Y-
direction thus producing a JXB force in the positive X-direction (along the flow) leading to flow
acceleration.
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Figure 17: Contours of Electric Potential with current lines

1.3.2 Shape Optimization of an Infinitely segmented Hall generator generator (Euler Solutions)

Motivation for simulating a Hall generator:

In a typical hypersonic vehicle operating at Mach numbers below 10, air entering the MHD channel is at
static pressures between 0.01 to 0.1 atm and temperatures around a few hundred Kelvin. The electrical
conductivity of air under these conditions is very low (around 0.1 mho/m or less). Hence external on-
board seeding or non-equilibrium methods are needed to generate and sustain electron number densities
required to obtain electrical conductivities on the order of 10-30 mho/m. For a meaningful operation,
power cost of

ionization should be much lower than the extracted electric power. This requirement suggests the use of
strong magnetic fields (7-10 T) in order to generate an interaction parameter high enough for appreciable
MHD effects. Low pressures and high magnetic fields lead to high Hall parameters, making it difficult to
operate a MHD channel as a Faraday generator. A Faraday channel, allowing a longitudinal Hall current
to flow would sharply reduce performance. The Hall current could be prevented by segmenting
electrodes, but it this could still lead to engineering difficulties such as arcing and also deteriorate the
performance of the Faraday channel.

Given these problems with a Faraday generator, it would be beneficial to use Hall configuration, where
opposing pairs of segmented electrodes are short-circuited, and the longitudinal Hall current is collected.
A Hall generator also seems like a natural choice, given the large Hall parameters characterizing a MHD-
based hypersonic vehicle. Hall generators also promise to attenuate the electrode arcing problem on
account of the large longitudinal current.

Results:

In practical MHD generators, keeping the surface area (volume) of a generator at a minimum is important
from the standpoint of minimizing heat losses. A sample optimization problem based on this requirement,
wherein the slope of the channel at the inlet was a design parameter was studied. Based on this angle, the
length of the Hall generator (region where the top and bottom electrodes were shorted) was varied, so as
to keep the total area of the generator constant. A higher slope at the inlet would just lead to a shorter
axial length of the generator and vice-versa.
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Figure 18 (a) shows the contours of electric field with current lines, whereas Figure 18 (b) shows the
variation in inlet angle with optimization cycles to extract maximum power. The results indicate that a
smaller inlet angle (and hence a longer MHD generator length) would yield maximum power while
keeping the area fixed.
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Figure 18(a). Electric field with current lines. Figure 8(b). Iterative optimization of inlet angle

1.3.3 Viscous simulation of MHD Accelerator/generator:

The above results were obtained using an Euler solver for simulating the flow. These simulations are
important in order to obtain a good estimate of the axial grids required and the upper and lower bounds
for various design variables of interest to the problem. Viscous flow simulations of these high-speed
flows require considerably longer time to converge, as it is necessary to resolve the thin boundary layers
in these flows. A considerable amount of computing time can be saved if one were to conduct these N-S
simulations in the neighborhood of the actual optimum solution.

As a part of our Phase I effort, we have developed a optimization scheme for viscous similar to the one
with Euler solutions. This scheme is coupled with a CEA code which can determine the equilibrium
chemical compositions for these MHD flow and compute realistic, spatially varying electrical
conductivities and Hall parameters. The Poisson solver can thus simulate a realistic MHD
generator/accelerator and thus be of immense use as a practical design tool.

Figure 19 shows the electric potential for an accelerator operating under the same flow conditions as
mentioned above. The flow comprises of air seeded with about 0.02% of KOH at 2500K at the inlet, thus
maintaining an electrical conductivity of about 10 mho/m.
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Figure 19: Contours of Electric field in N-S simulations.

1.3.4 Shape optimization of an MHD accelerator

We initiated a study of seeded air MHD accelerators partly because the conditions therein are close to
equilibrium and an equilibrium property code such as CEA from NASA Lewis can be effectively used to
model gas properties in such cases. Electrical conductivity is obtained from collisional cross section data
and the local values of species concentration of the ionizing medium (in this case, air seeded with KOH).
Air seeded in this manner develops a fair amount of conductivity at temperatures in the vicinity of 3000K.

We pose the following optimization problem:

Maximize the thrust produced by a nozzle:

T= jpe~pa+pu2ds
exit
with a nozzle length of 1m, inlet width of 0.1 m and exit width of 0.5 m, by optimizing the contour of the
nozzle surface defined by two con-joined segments shown in fig. [20]. The first is a circular arc segment
of a radius of curvature 0.15 m, and the second is a cubic curve connected to the first at an angular
location @ and having a y-coordinate of y1 at the exit plane. The design variables, therefore, are @ and

yl.

Figure 20 : Nozzle geometry for
design optimization

Flow

-
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A preliminary design study without the effect of MHD was made for such a nozzle geometry. Fig [21]
shows a sample convergence history of the objective function and the arc angle as the optimization
progresses. Nozzle inflow Mach number was selected to be 3 and an exit plane ambient pressure was
selected to be the isentropic value for a “mean” area ratio of 5.
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Figure 21: Nozzle thrust optimization with the arc-cubic geometry at inflow Mach number = 3

A central segment of such a nozzle was then powered by electrodes and a linear Hall-type generator was
modeled. Using the “mean” design condition referred to above (based on isentropic flow), we attempt to
obtain the load parameter K = Ey/uB of about 1.2. We select gas parameters ‘such that the mean
conductivity is about 2 mho/m. A magnetic field of 1 Tesla perpendicular to the plane of the flow was
imposed in the powered region with linear taper on either side. The value of the applied electric field was
3600 V/m, perhaps corresponding to batteries of about 360 — 450 Volts connected across the channel. We

present results from this design problem below.
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Figure 22: v-component of velocity with MHD (left) and without MHD (right)
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Figure 23: Optimization history showing the arc angle variation with thrust
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Figure 25: Mach number contours - note that for these conditions, exit Mach number in the MHD case is
actually slightly lower than without MHD, while the velocity is actually higher.

1.4 An integrated MHD generator-accelerator model

We made a preliminary study of the coupled MHD generator-accelerator configuration. Two casese were
studied, the first being a flat duct with specialized areas for power generation, combustion and flow
acceleration. The second case was that of a piecewise linear geometry.

Case-I: Straight duct.

Lengths:
Generator=2.0 m
Combustor=2.4 m
Accelerator =3.3 m
Total length= 7.7 m
Width=0.5m
MHD setup:
Sigma (average) = 15.0
Beta=1.0 Figure 26: Contours of electric potential in the straight
Accelerator PD = 2000 V duct accelerator
B-field=1T
Flow conditions:
Inlet Mach No = 3.0
Inlet Pressure = 0.1 atm
Inlet Temp = 2500 K
Inlet Velocity ~ 3000 m/s

The above conditions result in an interaction parameter of about 0.4. Figure above shows contours of
electric potential in such a case. An effective power generated by the linear Hall generator was 0.12 MW,
while the power used in the accelerator was 77 MW. Clearly, these are non-optimal and there is a very
important role in parameter selection for even so simple a problem. If the system is to produce a net
positive power, geometric as well as electrical parameters need to be selected correctly.
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Case-II: Piecewise linearly varying duct.

Lengths:
Generator = 2.0 m
Combustor =2.4 m
Accelerator =3.3 m
Total length=7.7m
Widths:
Inlet/Outlet =0.6 m
Combustor width = 0.3
MHD parameters:
Sigma =15.0 225 24 25527285 3
Beta=1.0
Accelerator PD = 2000 V
B-field=1T
Interaction parameter ~0.4
Flow parameters:
Inlet Mach No =3.0
Inlet Pressure = 0.1 atm
Inlet Temp = 2500 K
Inlet Velocity ~ 3000 m/s

131721252833

There is a vast potential for further investigations of this problem. Among the most important, from a
systems perspective, would be the electrical coupling between the power generator and accelerator and
how such a system may operate in a self-sufficient mode at a high efficiency for hypersonic/scramjet type
applications. It may be noted that we have again used a seeded-equilibrium air type approach here for the
sake of convenience. The introduction of non-equilibrium ionization would require the use of more
complex numerical tools that are presently beyond the scope of this investigation, but would make an
interesting and important research topic for a Phase-II project.
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1.5 Summary of Results:

As a part of our Phase I research, we have concentrated on developing the tools and strategy to optimize
MHD-based accelerator/generators.  We have demonstrated the ability to simulate an MHD
generator/accelerator and optimize their shape for a given design objective (maximizing power or thrust).
We have developed the capability to include important physics (viscous effects, spatially varying
properties such as electrical conductivities and Hall parameter) to simulate and optimize realistic
operating conditions in a MHD by-pass concept.
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Part-11

Plans for extension

Here, we present some possibilities for the extension of this work into a second phase. By way of
applications, we wish to consider either the bypass engine concept studied earlier in the exploratory level
in Phase-1, or the localized flow control concepts that are attractive.

Final report for Phase-I STTR Contract # FA9550-04-C-0117, “MHD Design optimization” Page 21 of 30
:H.YPERCOMP, INC.

Leader in High Performante Computing

T



2.1 Development of an optimal MHD-energy bypass propulsion system design

The optimal design of an MHD-energy bypass design for hypersonic vehicles presented here can be
extended into Phase-lI research. The design space will indeed be extremely complex, due to the vast
diversity in time and length scales in the physics encountered. We present here a sampling of design
variables that may potentially be chosen to model this problem.

The optimization problem itself can be one of the following:

1) Optimization of the total extracted power

2) Optimization of efficiency at a given power/length (minimization of losses)

3) Optimization of total cost subject to system requirements and engineering constraints

The given optimization problem can itself have many parameters which can be in one of the below
mentioned categories.

1) Geometric factors
@) length,
(ii) cross-sectional area,
(iii)  number and location of electrodes,
(iv)  electrode connections
v) Distribution of external load for power extraction
(vi)  Extent of the region for power extraction
(vii)  Connection scheme between generator and accelerator
(viii)  Efficiency of coupling between generator and accelerator

2) Physical factors
(i) strength of B-field
(ii) electrical conductivity (depends on seeding concentration, or beam current, beam energy,

beam efficiency)

Figure below shows the 2-D schematic of a MHD bypass scheme consisting of an inlet, generator,
combustor, and accelerator. The non-dimensional lengths, the reference length, typical magnetic fields
and electrical conductivity are also shown in the figure.

5.69 33 4.0
A \
M=8.0 M=7.09 y :
T=250K 10 T=3125K 0.5384 Accelerator 2.0
y
P =7E-3atm P = 1.4E-2atm
y
+—>
4.15 \ Cowl Combustor ¢ >
Generator
Sigma=5mho/m,B=7T
Lref=0.6 m
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The following figure shows an optimization problem comprising of a scheme where the design
parameters are the coefficients of a double spline for both the generator and accelerator. The optimization
problem could seek to maximize the extracted power in a generator and maximize thrust in the
accelerator. The some possible design parameters for both the accelerator and generator are also shown

in the figure.

Combustor

Generator Accelerator

1, = length of generator 1, = length of accelerator

1, = length of electrodes I, = length of electrodes

a (x) = cross-sectional area a(x) = cross-sectional area

{a,b, ,Cl,dl,az,bz,cz,dz}g = co-efficients ‘{jal,ll:ll ,cl,<]i.] ’az%bz’cbdz]} a = co-efficients of

of double spline for generator ouble spline for accelerator
Final report for Phase-I STTR Contract # FA9550-04-C-0117, “MHD Design optimization” Page 23 of 30
FEe

5

Leader in High Performance Computing



2.2 Shock-shock interaction and stagnation point heating

Avoidance of shock wave impingement on the lower cowl lip of hypersonic inlets is a critical problem in
the design of hypersonic flight vehicles. Shock/shock interactions can result in an amplification of the
usual stagnation point heat transfer rate by a factor of 30 or more. Edney' reduced shock/shock
interactions to six types that depend on the orientation of the shock waves to the body. Only types 1II and
IV involve a large value of the normalized heat transfer rate, g/qo, where qp is the stagnation point rate
without any interaction. Type III and IV interactions involve jets and shear layers that impinge on the
surface of the body and result in extreme values of q/qo.

One can, of course, design the inlet ramps so that shock waves do not impinge upon the lower cowl lip for
the entire range of flight mach numbers, however, this leads to excessive spillage drag. Unfortunately, use
of variable geometry to control shock wave position is often not feasible in hypersonic flight.

The typical optimization would involve control of shock position via MHD to minimize spillage drag
(maximize capture ratio) over the entire flight Mach number range, without allowing the shocks to
impinge on the cow! lip. This will be set up as constraints within the optimization procedure. The shock
impingement will be forced to be at some clearance distance away from the cowl lip. A simple
implementation of this strategy would be to increase the cowl length artificially and optimize for this
configuration so as to maximize the mass capture, but forcing the overall configuration to cause
intersection of the shocks at the tip of the artificially extended cowl.
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2.3 MHD-Based Flow control

Turbulence, transition, drag reduction.

There is a growing resurgence of interest in the use of MHD to influence the lift and drag characteristics
of airfoils and hydrofoils. The control of turbulent flows and transition using MHD is an almost classical
MHD problem, which has reincarnated multiply in recent times. Tsinober has provided a review of flow
control opportunities available here, and Henoch et al® have described an ongoing experimental program,
which holds enormous promise, given its immediate relevance to seawater and possible extensions to
plasma based devices in aeronautical engineering.

y
l FLOW .
Electric field lines Magnstic field lines
x ~.
N

Permanant
Magnels

Back Jrol

crremvuen runsve

_Z

Figure 30: Lorentz force actuator to reduce turbulent skin friction, from Ref.[8] showing side and top
views. Force acts in the spanwise direction. Electrodes are designed to reduce spanwise fringing fields.
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2.4 Optimal MHD Adjoint Solution via the Hamilton-Jacobi-Bellman Equation

A generic adjoint based optimization procedure is outlined for an Objective Function, J (U, ¢,8) that

depends on the flow variables U, electric field potential (and thereby on the current) ¢, and the design
parameters, 6.

J.U,0,6) = IP(U, 0,6)dQ + cj MU, 0,6)ds )
0 S

For example, the problem could be the maximization of the mass weighted pressure loss for a hypersonic
_; cj‘M (U,p,6)dsand M(U,0,6) = pury(P ~ P,)) or even the total mass capture
n
=S

at the inlet to avoid any spillage drag losses.

@1is the ramp angle and note, in this case along the stream-wise direction the change in the inlet area can
be represented in terms of the ramp angle as, 4y = (x - d) tan6, where d is the stream-wise location
identifying the ramp vertex. The vector of state variables (characterizing the flow) are given by,

inlet where in J.(U,¢,6) =

P P o
2
U= and the Flux Vectors in Cartesian coordinates, 7 =| “* TP G= 'Zuv
puv ot p
PE (E + s (E + ply
)
ou ou
=5 RU,0)=SU,0,6) = 5 " FU,6,1)  where, f(U,0,1)=-R(U,6,0)+SU, 0,6,
©))

The system of equations governing the flow (LHS) without the source term is purely Hyperbolic, while
the source term by itself is computed as a solution to an Elliptic PDE.

We adopt an approach wherein, the flow solution is first computed, setting the source to zero and then
utilizing the flow solution, the source term is computed, which is then substituted back into the flow
equations for the solution in the presence of a non-zero source term and so on.

The objective function however depends on the flow variables, source term states and the design
parameters. ’

For the Flux vectors described above, the Jacobians with respect to the flow variables are computed to be
oF oG

—and—.

ou ou

Hamilton-Jacobi Equation

For @ as the set of design variables, the flow fields physics is represented as U(6) where U is assumed to
be the solution of (3). Note that R(U, § = 0, is the steady state PDE.

We assume that the computational domain and the primitive variables are the same and suppose that the
cost function J. is measured b (1).
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This optimal cost problem is viewed in the sense of the optimization iteration number horizon, where a
correspondence between the iteration number and the time horizon in conventional optimal control
problems is hypothesized.

The justification is in the following observation:

Conventional Optimal Control Problem:

u(ty=-K(x,t)

is the feedback law that is sought to render some expected cost of the state deviations to be minimal. Here
u(1) is the free variable (control) that is obtained as a function of the states of the dynamical system.

Flow Control Optimization Problem: The desired shape change is expressed as

Ok =0 + AUk, 04)

Where, 6, is vector of shape parameters at the k™ iteration and A(U,, ¢, ) is a function of the states of the
dynamical system (flow solution).

Thus theoretically, for the infinite optimization horizon problem, we may cast this problem as one that
seeks the optimal control strategy, over an infinite number of iterations.

Interestingly, these two problems viewed in the Discrete Optimization horizon and Discrete Time sense
reduce to the solution of the Hamilton-Jacobi-Bellman equation that is summarized below.

For the system described in (3), with the steady solution, the performance index can be summarized as in

(1)
. . mf
The value function is then defined by, V(U,¢,k)= ZJ U,p,0)

The dynamic programming principle states that for every, re[l N]

V' (U, ek = "‘f ZJ U, 9,6)+V(r,U(r), o(r))

From the above we obtain,

VinW,0) =V, (U, @)+ H®, VeV U,p)) ¥=[UT ol

also “@
WV g gy (9,9)
R
VO (Ua (0) =0
inf T
The Hamiltonian H is given as H(¥, 1) = t’ﬂ {lc W, 9H+4 f(‘P, 9)}
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The nonlinear first order PDE in the discrete form is the dynamic programming PDE or Hamilton-Jacobi-
Bellman equation. Further, the Hamiltonian is concave in the variable A (since it is the infimum of linear

functions).
Viscosity Solutions

The terminology for the viscosity solution comes from the vanishing viscosity method, which
finds solution for (4) as a limit of ¥ — V" of solutions to

*

_Eavesrpye,
2 EY

)=0 (5)

The Laplacian term —;—AV‘ is used to model fluid viscosity (for the numerical solution of the HJB alone).

A numerical scheme can be constructed that provides the optimal shape function as well as the
Value function based on several existent solvers. Posing the optimization problem as an optimal control
problem this way, eliminates the need to solve the numerical gradients. Further, in case of the Adjoint
developments, the evaluation of the Adjoints is not trivial especially when the influence of shape
functions is to be evaluated on a far-field flow variable. The above approach alleviates these difficulties at
the expense of the iterative computational cost (multiple sub-problems). The relative computational
burden should lie in between the numerical adjoint solution and the numerical gradient solutions.

As opposed to the traditional and adjoint methods, where the focus is on trying to compute the
gradient of the cost function with respect to the shape parameters, the focus of the solution to the HIB
equation is to construct an approximation to a sequence of shape-changes that will lead to the minimum
cost.
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ABSTRACT

SENSITIVITY ANALYSIS AND OPTIMIZATION OF
HYPERSONIC INLET PERFORMANCE SUBJECT
TO MAGNETOHYDRODYNAMIC EFFECTS

Publication No.

Jennifer Dawn Goss, MS
The University of Texas at Arlington, 2005

Supervising Professor: Kamesh Subbarao

This research considers the effects of magnetohydrodynamic source terms on the
optimization of a scramjet inlet. A representative case is found by determining the
optimal inlet configuration for the inviscid case assuming no MHD source. This is a
simplified look into the optimization of the two ramp inlet say to a supersonic scramjet
engine. The parameter being optimized is the mass weighted pressure loss at the throat
of the inlet such that the pressure drop through the inlet is minimized. The optimal inlet
configuration is then determined allowing for the presence of a charged flow through a
magnetic field. This comparison will demonstrate the effects of the MHD source on the

fHow.



CHAPTER 3

OPTIMIZATION
Optimization is the process that finds the best or optimal solution for a given
situation. There are three basic ingredients that make up an optimization problem:
1. An objective function f(z) - That which we want to minimize or maximize.
2. A set of variables or unknowns z = {z1, Z, ...2,} - The parameters that will affect
the value of the objective function.
3. A set of constraints - Limits set on the variables in any of the following forms:
e equality — G;(z) =0, (t=1,...,m)
e inequality — G;(z) <0, (i=me+1,...,m)
e parametric bounds — Ziwer; Tupper
The optimization problem can then be stated mathematically as:

min f(x)

ZER™

subject to

G,(IE) = 0 (i=1,...,me)

Gi(z)

IA
o

(t=me+1,...,m)

Tiower < T < Lupper

The type of optimization routine chosen to solve a particular problem is dependant

on the size and characteristics of that problem. The size is influenced by the number of

28
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design variables and constraints, and the characteristics describe the linear or nonlinear

nature of the problem, this applies to the objective function as well as the constrainté.
In our case the design variables are the two ramp angles, z = {a;,a2}. The

objective function, Fop;(z) we are trying to optimize is the mass weighted total pressure

loss:

NG -
Fopj = Zp”’””’%ﬁi 3= Fe) (3.1)

where the 4, j indices refer to the mesh points on the exit plane of the inlet and P ;
and P,, are the total pressures at the exit mesh points and at the entrance to the inlet
respectively. And the constraints are the flow equations, solved by use of the flow solver
as well as the condition that a; < a,. We also set some upper and lower limits on the
angles to ensure a well behaved result.

Our problem is therefore a constrained nonlinear multivariable problem in which
we are going to implement a gradient based method. This type of method is generally
the most efficient when the function to be minimized is continuous in it’s first derivative.
For functions that are highly nonlinear or have discontinuities, a search method that
utilizes only function evaluations is more suitable. Where as higher order methods such
as Newton’s method, may be feasible for functions where the second order information

is easily calculated.

3.1 BFGS Optimization

As mentioned, Newton’s method is a higher order method that requires the calcu-
lation of Hessian, H at each step. This is a very computationally expensive procedure
and can at times be very difficult. We there for look to a set of methods known as
quasi-Newton or variable metric methods. Here an approximate Hessian matrix is built

up gradually instead of calculating it at every single point. The build up of the Hessian is
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done using gradient information from some or all of the previous iterations to formulate
a quadratic model problem of the form:

min %xTHx +clz+b

where the Hessian H is a positive definite symmetric matrix, c is a constant vector and b
is a constant. The optimal solution for this problem occurs when the partial derivatives

of f go to zero,

Vf(z*)=Hz*+c=0

where the optimal solution z* can be written as:
r=H

Quasi-Newton methods use the observed behavior of f(z) and V f(z) to build up
curvature information to make an approximation to H. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is just one technique for the calculating the Hessian update. It
is considered to be one of the most effective general purpose methods [26].

The BFGS optimization formula involves calculating a search direction in order to

determine the descent direction that will locate the minimum.

i

dk = —Hk—l . Vf(.’l?k) (32)

where f(z) if the objective function and k denotes the iteration number. We start with
an initial design vector zy and an approximate Hessian, Hy which can be set to any

symmetric positive definite matrix, i.e. identity matrix.
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A one-dimentional search is performed in the search direction to determine the

distance, a* to be traversed in that direction. The design is then updated as:
Ty = T + a’dy (33)

The Hessian matrix is then updated as:

T T T
oG HispseHe
T T
. Sk 83 Hysp.

Hk+1 = Hk + (3.4)

where

Sk = Tr41 — Tk

g = Vf(zrs1) — Vf(zk)

Gradient information is either supplied through analytically calculated gradients,
or derived by partial derivatives using a numerical differentiation method via finite dif-
ferences. This involves perturbing each of the design variables in turn and calculating
the rate of change in the objective function.

The BFGS method implemented here is in the form of the ‘fmincon’ function in
MATLAB® !. ‘fmincon’ is designed to find a minimum of a constrained nonlinear multi-
variable function [26]. It uses a Sequential Quadratic Programming (SQP) method where
an estimate of the Hessian of the Lagrangian is updated at each iteration using the BFGS

formula. The Lagrangian is the cost function augmented with the constraints:

L(z,\) = F(z) - ATC(x)

IMATLAB/SIMULINK is the trademark of The MathWorks Inc; Natick, MA,USA
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The function ‘fmincon’ was found to be very sensitive to the step size, as well as
the scaling of the objective function itself. Several combinations of the above mentioned
variables were tried in order to obtain the best results and it was found that a scaling of
In(1 + Fobj?) provided good convergence properties.

In order to ensure that we are still minimizing the correct function we state the

following lemma:

LEMMA 1 (Modified Objective)
min In(1 + F3;) = min Fo;
T Z

Proof:

To find an extremum of a function we take the first derivative and set it equal to zero:

) oy 1 OF;
55 ln(l + Fobj) = W 2Fob_7 6_.’1,‘ =0

obj

This equation is only satisfied when Fi;; = 0, which is a trivial solution, or when ?%i =0,

which is the same extremum as the original function, min, Fp;.
Now we wish to prove that this extremum is in fact the same extremum as that
of the original function, we therefore take the second derivative and confirm that it is of

the same sign:

&2 8 [ 2Fy ) OF +( 2F,; ) 82 F,,;

—In(1+ F3,) = —
0xz? n(1+ Foy) Oz <1+Fo2b]. oz 1+ F;; ] 0a?

| 2Fy; \ %F.
- \1+F% ) 02

o]
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since F; is a positive value, the result is simply a scaling of the second derivative of
the original function, the sign is unchanged. This proves that extremum of modified

objective function is of the same type as that of Fg;, therefore:
min In(1 + F3;) = min Fy;
x xT

3.2 Implementation

The implementation of this optimization routine is laid out in figure 3.1. As is
shown in the flow chart the flow solution is calculated n + 1 times for each update of
the Hessian, where n is the number of design parameters. The values of the objective
function are stored from iteration to iteration for determination of the minimum and

calculation of the gradients.

3.3 Results

The final optimized results of oy = 3.904deg and a, = 7.265deg are consistent
with Korte’s results of oy = 4.263 and oy = 7.621. The initial and final configurations
are summarized in table 3.1. The initial condition was the shock cancelled case discussed
earlier.

Fig. (3.2) shows the design history of the optimization routine at each iteration of
the inside loop in Fig. (3.1). The outside loop iterations or number of times that the

Hessian was updated, is equal to the total number of flow solver iterations divided by

the number of design variables plus 1, ((::f;)) From Fig. (3.1) we can tell that there
were approximately 93 iteration of the flow solver and 2 design parameters, giving us
approximately 31 update of the Hessian. The F,;; values plotted are scaled as per the
scaling function mentioned earlier so as to improve the convergence properties. Fig. (3.3)

is a plot of the Mach number contours for the final optimized configuration.
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Angle (deg)

Table 3.1 Summary of initial and final inlet conditions.
| a1 (deg) ap (deg) Fopy

Initial condition 2.882 9.342  0.2445
Optimized value | 3.904 7.265  0.1718

Angles o, O, and Objective Function Vs Optimizer lteration

Figure 3.2 Optimization design history of ramp angles.
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CHAPTER 4
INVISCID EULER EQUATIONS WITH MHD SOURCE

4.1 MHD source term modelling

The effects of a charged flow through the inlet with an applied electromagnetic
field can be modelled with the addition of appropriate electrodynamic terms [7]. Let us
first consider a charged flow with conductivity, o and velocity V; if we apply a magnetic
field, B to this flow the resultant current density is given as Jg = 0V x B. Whereas if
an electric field, E is applied to the same flow the current density is given as Jg = dE.
The contributions to the electric field may be due to an applied electrostatic field E;,
due to the mutual repulsion or attraction of electric charges, or an induced electric field,
E;, due to the flow of charged particles through a magnetic field, such that E = E; + E;.
Thus the total current density in a flow with an applied electromagnetic field (neglecting

Hall effect) is given by the generalized Ohm’s law:
J=0(Es+E;+V x B) (4.1)

For the electrostatic field we know from Coulomb’s law that E; is irrotational and from

Gauss’s law that the divergence is fixed:

VxE, = 0
V.E, = 2
€o
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where p, is the charge density and ¢, is the permittivity of free space. The induced electric

field on the other hand has zero divergence and a finite curl governed by Faraday’s law:

V'Ei = 07
oB

E = ——
V x 5

We therefore have a total electric field E = Eg + E;, uniquely determined by:

V-E = -g—e-, (Gauss’s law) (4.2)
VXE = -—%?, (Faraday’s law) (4.3)
and J = o(E+V xB) (Generalized Ohm’s law) (4.4)

MHD flows are characterized as having a very low (< 1) magnetic Reynolds number,R,,
R, = poogul

where i, is the permeability of free space, o, is the gés conductivity, u is the gas velocity
and L is a characteristic length.(High magnetic Reynolds numbers (> 1)are characteristic
of fusion research and astrophysical phenomena). This tells us that the conductivity in
MHD flows is very low, therefore the currents and hence the induced electric field is also

very small. This allows us to assume B to be constant, therefore

0B _

0
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As a consequence of the above we may introduce a scalar electrostatic potential ¢ such
that E = “Vo and V2%p = const. We can then replace the electric field term in the

generalized Ohm’s law, Eq. (4.4) with the electrostatic potential to get
J=0("Vyp+V xB) (4.5)

Since V - (V x E) = 0, Faraday’s law, Eq. (4.3) implies that the magnetic field, B is
solenoidal; V - (7%2) = 0, therefore V- B = 0.
The conservation of charge is given as,

_— ape

ViI==%

this equation simply states that the rate at which the charge is decreasing in a small
volume must equal the rate at which the charge flows out across the surface of thaf
volume. For a stationary conductor p, is zero, and when there is motion it turns out that
pe is very small and too low to produce any significant force, p.E and therefore may be

neglected. Based on these observations we conclude that
V-J=0

therefore, J is also solenoidal. Taking the divergence of Eq. (4.5). we can further simplify

the generalized Ohm’s law to get an expression for the electric potential

V-J=0 = V-.o(Vp)=V-(cVxB)
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If we integrate both sides of this equation over a volume dV and use Gauss’s theorem to

convert the volume to a surface integral the equation becomes,

/V-U(V(p)dV = /V' (6V x B)dV
1% v

/0V<pds = /O'V x Bds

We can now discretise this formula for use in our flow solver to calculate the MHD
portion of the flow simply by summing up the contributions from each grid cell surface.
For a given magnetic field and flow conductivity we can calculate the electric potential

as follows:

3 o (‘”—N%“”—’j As=Y" o(V x B)As

faces faces
) Efaces O'f(v X B)AS - Zfaces Uf%AS
P -
Zfaces %AS

This allows us to then calculate the current density directly from Eq. (4.5), and it’s

impact on the flow equations is demonstrated in the following section.

4.2 Euler equations with MHD effects
As derived in chapter 2 the two-dimensional, nonlinear, Euler equations in conser-

vative form for a compressible, inviscid flow are given as

8U OF G _

"é-t—-}--é-; 5:7;—5 (4.6)

With the application of a magnetic field to a charged flow the body forces and volumetric
heating effects are no longer negligible. The body force term known as the Lorentz force

are given by the vector J x B, and volumetric heating known as Joule heating is given
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as, 7;; As seen earlier in the development of the Euler equations the contribution to the
momentum equation is strictly due to the Lorentz forces where the contribution to the
energy equation is the total rate of energy addition, J-E = %2 + V- (5 x B) due to both
volumetric heating and work done by the Lorentz forces.

In Eq. (4.6) U, F and G are as defined in the previous section and the source term,

S is given as
0

(J x B),
(J x B),
i (J-E) |

The left hand side of Eq. (4.6) is unchanged from before, and as stated earlier this
equation is hyperbolic for Mach numbers greater than one. The right hand side however
is unconditionally elliptic for smooth variations of material properties, we therefore need

to implement a Poisson solver to obtain the source terms.

4.2.1 Magnetic field perpendicular to the x-y plane
For a magnetic field applied to a conducting fluid, there is an induced electric field.
Knowing this fact we must allow for the influence of the Hall effect in our equations, such

that Ohm’s law must be rewritten as follows

J=0("Vo+V xB)- %(J x B) (4.7)
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the term wr is called the Hall parameter where 7 is the mean free time between collisions,
and w is the cyclotron frequency which for an electron with charge e and mass m,, moving
through a magnetic field of strength B, is equal to

eB
Me

w (4.8)

With the magnetic field implemented along the z-axis and utilizing the property of
J being divergence free, we can convert Eq. (4.7) into a differential equation in terms of

the electric potential. Let us first set the following notation:

V = (u,v,0), B=(0,0,B) B = wr, a=

Then we can break down Eq. .(4.7) into it’s components:

Je o(Typ, + Bv) — BJ,
Jy | = | o(Cypy — Bu) + BJ,
J, 0

Since we do not apply an external electrostatic field the only electric field present is due
to the applied magnetic field and is restricted to the x-y plane thus the z-component of

the electric potential, ¢, is zero. The current density components are therefore given by

Jr wz — By — Bv — fBu

= &
Jy @y + Bz + Bu— By

and if we now enforce the divergence free condition on the current density, V-J =0

0 (o (0000 o 8 (L (%0, 2% o o)) -
6m<a(6x ﬁay vB ’BUB>)+6y<a(8y+ﬁ8_x+UB BuvB)} =0
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grouping like terms

0 (49¢ _ 059\ L 0 (9% 500\ _ 2 _ 9 B -
5 (O‘ax aﬂ8y>+8y <a6y+aﬁ6z —axa(vB-{—ﬂuB) ayo:(uB BuvB)

if we assume constant properties, a and § can be pulled out of the partial derivatives

8 0y? 0p y? s, 0
0 0
2 - — — a——— —
Vi = Ba:(vB + fuB) ay(uB BvB) (4.9)

Eq. (4.9) is the final form of the Poisson equation to be solved for this case.

4.2.2 Magnetic field in the x-y plane
If however, we implement a magnetic field in the  —y plane and consider an ideally
sectioned Faraday MHD generator such that the Hall effect is neutralized, the resultant

current density is only in the z direction:

V =(u,v,0), B=(B;,B,0), J=(0,0,J)

J=0("Ve+V xB)

Iz 0
Jy | =0 0
J uBy, —vB; — ¢,

For this research we are setting ¢, to zero which corresponds to a short circuit of the

electric field.
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The source terms are then trivially found as follows without the need for a poisson

solver:
0

0B, (vBx — uBy)
0By (uBy — vBy)
J-E

4.3 Results
4.3.1 Magnetic field perpendicular to the x-y plane

To simulate an ionized flow we set the conductivity in a small pillbox area in the
center of the inlet where the flow would most likely become ionized, to some chosen
value, and the conductivity outside the box is set to 1e~6. For this case we oriented the
magnetic field along the z-axis or out of the page with a uniform magnetic field strength
of 1.0 tesla. As you can see in Fig. (4.1) the currents are indeed generated but only
in the zone of simulated ionization, this is expected since the conductivity is negligible
outside that zone. We used a full inlet in this case due to the non-symmetric nature of
the problem. Fig. (4.2) demonstrates the effects that this current flow has on the Mach
contours, the flow decelerates earlier and the pressure recovery at the inlet is decreased

from the non-MHD case.

4.3.2 Magnetic field in the x-y plane

For a magnetic field implemented in the x-y plane there are no currents to be seen
since they are generated perpendicular to the x-y plane. We ran a number of simulations
with varying conductivity and magnetic field angle and these results are shown in Fig.

(4.3) for two different magnetic field strengths.
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3.3

3.2

1

3.

28

27

26

X (m)

(b) Zoom in of pill box area

Figure 4.1 Inlet with current flow for a pillbox shaped conducting region. (b) is a closer
look at the ionization zone which can be seen in the center of (a). ¢ inside the box is 50
mho/m
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Inlet flow Mach Number Contours
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Figure 4.2 Inlet Mach number contour plots for a pillbox shaped conducting region. Two
values for the conductivity are shown, in (a) ¢ = 10 mho/m, (b) ¢ = 50 mho/m.
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Flow Field Results for a Constant Magnetic Field, B = 0.2 Tesla
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(a) Constant magnetic field B = 0.2 tesla

Flow Field Results for a Constant Magnetic Field, B = 0.5 Tesla
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(b) Constant magnetic field B = 0.5 tesla

Figure 4.3 Mass weighted pressure loss, total pressure recovery and mass flow for a

constant magnetic field with varying field angle and varying conductivity. The magnetic

field strengths are (a) 0.2 tesla and (b) 0.5 tesla.
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As can be seen in Fig. (4.3) the application of a magnetic field to the charged

flow always results in a decrease in the pressure recovery (or an increase in the pressure
loss). This is consistent with the theory in that we are not adding any energy to the
flow and the resultant joule heating is only a detriment to the pressure recovery. We
therefore adjust the problem to consider a cowl style inlet where we try to optimize the

mass capture. The optimal situation for the cowl configuration can be seen in Fig. (4.4).

Cowl

Flow

Figure 4.4 Optimal cowl configuration with shocks converging on the cowl lip.

To determine our optimal configuration we ran the optimizer with a mass capture

objective function given as:

Fobj = Zp,-,jui,jAyi,j (410)

The results of which are shown in Fig. (4.5) where a; = 2.2 deg, a; = 8.9 deg and the
mass capture equal to 6.1965 kg/s.
During off nominal flight conditions where the flow Mach number is less than the

design value, the shocks will move ahead of the cowl lip and some of the compressed air
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Inlet flow Mach Number Contours
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Figure 4.5 Mach contours of optimized cow! inlet.

will escape the inlet resulting in ‘spillage’ and a decrease in the mass capture. In flight
conditions where the flow Mach number is greater then the design value, the shocks move
into the inlet causing multiple reflected shocks, loss of total pressure, possible boundary
layer separation and engine unstart [4]. Fig. (4.6) demonstrates these conditions.

To simulate a less than design Mach number flow we adjust the ramp angles to
o1 = 3.0 deg and oy = 9.0 deg which results in a mass capture of 5.8757 kg/s. See Fig.

(4.7) for the Mach contours in this case.
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(2) Mach number less than design
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/

(b) Mach number greater than design

Figure 4.6 Off-nominal cowl configurations (a) shows a less than design Mach number,
(b) shows a greater than design Mach number.
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Inlet flow Mach Number Contours
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Figure 4.7 Mach contours for off nominal cowl inlet.

We now investigate the ability of an applied magnetic field to direct the flow back
to the optimal mass capture configuration. Two different scenarios are considered; one is
a moving e-beam type ionization method [3] such that the magnetic field and ionization
region are movable and coincident, the second is a moving magnetic field but stationary
ionized region [4]. Fig. (4.8) demonstrates each scenario. In the case of the e-beam
ionization the ionized region is enclosed by within lines that are parallel to the magnetic

field lines: yo + (z — 2o — Az) tan(a) < y(z) < yp + (x — o+ Az) tan(a), the line y(z) <
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radius of inlet, and the body. The parameters g, yo and Az determine the position and
width of the ionized region.

Figs. (4.9) through (4.12) show the results of this study. It is clear from these
results that the larger the magnetic field strength and the larger the conductivity the
greater the influence on the flow. It is interesting to note that the stationary ionized zone
has a much greater ability to manipulate the flow than the coincident ionized region. For
the largest values of B and o (line corresponding to B = 0.5 in Fig. (4.12)), we can see
that the mass capture is indeed approaching that of the optimal situation.

With the results from this broad parametric study we decided to set up the prob-
lem in the optimization routine and compare the results. This time we set the objective
function as the mass capture Eq. (4.10), and the design variable was the magnetic
field/electron beam angle alone. Aware of the sensitivities in the optimization routine
we decided to try several different initial conditions to see how well the results con-
verged: We decided on initial conditions of the implementation angle, 6g; above and
below the approximate optimal values given by the parametric study. Tables (4.1) and
(4.2) summarize the results.

Table 4.1 Table of optimized magnetic field angle for coincident ionized zone.
l f5; below optimal 6g; above optimal

Initial condition (deg) 100 170
Optimized value (deg) 141 165

Table 4.2 Table of optimized magnetic field angle for stationary ionized zone.
| fp; below optimal 6p; above optimal
Initial condition (deg) 80 140
Optimized value (deg) l 108 111
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{(a) Moving magnetic field and coincident ionizing e-beam

Tonized 7 Y Lowl

| zone |

Fldw b 4

4

(b) Moving magnetic field and stationary ionized zone

Figure 4.8 Application of magnetic field and ionized region. (a) depicts the coincident
ionization region and (b) shows the stationary ionized region.
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Figure 4.9 Mass capture for inlet with conductivity o = 0.5 mho/m. Results are shown
for (a) coincident ionization and (b) stationary ionization.
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Flow Field Results for a Constant Conductivity, s = 1 mho/m
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Figure 4.10 Mass capture for inlet with conductivity o = 1.0 mho/m. Results are shown
for (a) coincident ionization and (b) stationary ionization.
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Flow Field Results for a Constant Conductivity,s = 1.5 mho/m

6.2 T T T T T T T T
- B =0tesla
-&- B=0.25
- B=0.5
6.1 1
6+ 4
59F

Mass Capture
o
[=-]
T

571

56+

551 B

5'4 1 ] 1 1 i 1 1 1

0 20 40 60 80 100 120 140 160 180
Magnetic field angle (deg)
(a) Coincident e-beam ionization
Flow Field Results for a Constant Conductivity, ¢ = 1.5 mho/m

6.2 T T T T T T T T
-~ B =01tesla
-3 B=0.25
-8- B=0.5

6.1}

6 -
59+

Mass Capture
o
e-)
T

571

586

5.4 t L 1 1 L L L '
0 20 40 60 80 100 120 140 160 180

Magnetic field angle (deg)

(b) Stationary ionization

Figure 4.11 Mass capture for inlet with conductivity ¢ = 1.5 mho/m. Results are shown
for (a) coincident ionization and (b) stationary ionization.
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Comparing the results of the optimizer with those of the parametric study for the
stationary ionized zone we can see a very nice correlation. The spread in the optimized
results is not large and is consistent with the parametric study. However in comparing
the optimizer results with those of the parametric study in the case of the coincident
ionization zone we see a bit of discrepancy. There is a large spread in the values given by
the optimizer depending on whether we began the optimization above or below the peak
value shown in the parametric study. In order to better understand this result we did
another parametric study around the peak value. We limited the study to the B = 0.5
tesla and o = 2 mho/m case and varied the magnetic field angle from 120 to 180 degrees.
As can be seen in Fig. (4.13) the results of this study show that the curve is not very
smooth and this might explain the large range in values given by the optimizer for this
case.

To round out the study we decided to try to optimize both the geometry and the
magnet field angle. This case may seem redundant in that it would require both actuating
surfaces as well as an ionization method and a Way to generate the magnetic field, but it
is also represents the possibility of fine tuning the magnetic field. Again the off nominal
case of a; = 3.0 deg and ay = 9.0 deg was used with the initial magnetic field angle of
70 deg. We limited this study to the stationary ionization zone with a conductivity of 2
mho/m and a magnetic field strength of 0.5 tesla, the results of which are shown in Fig.
(4.14).

The final configuration for the geometry is very close to that of the optimal mass
capture with no MHD source term present, and the final magnetic field angle is consistent,

with that of the previous case. The results are summarized in table 4.3.
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Flow Field Results for a Constant Conductivity, 6 = 2 mho/m
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Figure 4.13 Zoom in of peak values for the moving ionization zone.

Table 4.3 Table of optimized geometry and magnetic field angles for stationary ionized

zone,
| a1 (deg) ap (deg) 6p (deg)
Initial condition 3.0 9.0 70.0

Optimized value 2.14 9.11 110.5
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